1,038 research outputs found

    Analysis and study of hospital communication via social media from the patient perspective

    Get PDF
    Currently, the online interaction between citizens and hospitals is poor, as users believe that there are shortcomings that could be improved. This study analyzes patients’ opinions of the online communication strategies of hospitals in Spain. Therefore, a mixed-method is proposed. Firstly, a qualitative analysis through a focus-group was carried out, so around twenty representatives of national, regional and local patients’ associations were brought together. Secondly, the research is supplemented with a content assessment of the Twitter activity of the most influential hospitals in Spain. The results reveal that the general public appreciate hospitals’ communication potential through social media, although they are generally unaware of how it works. The group says that, apart from the lack of interaction, they find it hard to understand certain messages, and some publications give a biased picture. In order to improve communication, patients and relatives are demanding that their perspective be taken into consideration in the messages issued to enhance the quality of life and well-being of society

    Strong Optomechanical Squeezing of Light

    Full text link
    We create squeezed light by exploiting the quantum nature of the mechanical interaction between laser light and a membrane mechanical resonator embedded in an optical cavity. The radiation pressure shot noise (fluctuating optical force from quantum laser amplitude noise) induces resonator motion well above that of thermally driven motion. This motion imprints a phase shift on the laser light, hence correlating the amplitude and phase noise, a consequence of which is optical squeezing. We experimentally demonstrate strong and continuous optomechanical squeezing of 1.7 +/- 0.2 dB below the shot noise level. The peak level of squeezing measured near the mechanical resonance is well described by a model whose parameters are independently calibrated and that includes thermal motion of the membrane with no other classical noise sources.Comment: 12 pages, 8 figure

    Topography Experiment (TOPEX) Software Document Series Volume 7: TOPEX Mission Radar Altimeter Engineering Assessment Report, February 1994

    Get PDF
    This document describes the GSFC/WFF analysis of the on-orbit engineering data from the TOPEX radar altimeter, to establish altimeter performance. In accordance with Project guidelines, neither surface truth nor precision orbital data are used for the engineering assessment of the altimeter. The use of such data would imply not only a more intensive and complete performance evaluation, but also a calibration. Such evaluations and.calibrations are outside the scope of this document and will be presented in a separate Verification Report

    Control of Material Damping in High-Q Membrane Microresonators

    Full text link
    We study the mechanical quality factors of bilayer aluminum/silicon-nitride membranes. By coating ultrahigh-Q Si3N4 membranes with a more lossy metal, we can precisely measure the effect of material loss on Q's of tensioned resonator modes over a large range of frequencies. We develop a theoretical model that interprets our results and predicts the damping can be reduced significantly by patterning the metal film. Using such patterning, we fabricate Al-Si3N4 membranes with ultrahigh Q at room temperature. Our work elucidates the role of material loss in the Q of membrane resonators and informs the design of hybrid mechanical oscillators for optical-electrical-mechanical quantum interfaces

    Cavity optomechanics with Si3N4 membranes at cryogenic temperatures

    Full text link
    We describe a cryogenic cavity-optomechanical system that combines Si3N4 membranes with a mechanically-rigid Fabry-Perot cavity. The extremely high quality-factor frequency products of the membranes allow us to cool a MHz mechanical mode to a phonon occupation of less than 10, starting at a bath temperature of 5 kelvin. We show that even at cold temperatures thermally-occupied mechanical modes of the cavity elements can be a limitation, and we discuss methods to reduce these effects sufficiently to achieve ground state cooling. This promising new platform should have versatile uses for hybrid devices and searches for radiation pressure shot noise.Comment: 19 pages, 5 figures, submitted to New Journal of Physic

    Tunable Cavity Optomechanics with Ultracold Atoms

    Full text link
    We present an atom-chip-based realization of quantum cavity optomechanics with cold atoms localized within a Fabry-Perot cavity. Effective sub-wavelength positioning of the atomic ensemble allows for tuning the linear and quadratic optomechanical coupling parameters, varying the sensitivity to the displacement and strain of a compressible gaseous cantilever. We observe effects of such tuning on cavity optical nonlinearity and optomechanical frequency shifts, providing their first characterization in the quadratic-coupling regime.Comment: 4 pages, 5 figure
    • …
    corecore